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We show how to calculate the spectrum of statistical fluctuations in structured nonequilib-
rium steady states (SNESSs)—viz., memoryful, stationary processes generated by hidden Markov
models—using their ε-machine presentations. We review basic fluctuation theory, drawing out par-
allels between statistical mechanics, information theory, and large deviations. To analyze the in-
teraction between statistical fluctuations and process structure, we introduce the thermodynamic
spectra of statistical complexity and excess entropy—structural properties that complement the
oft-used spectrum of Renyi entropy rate that monitors fluctuations in information production. We
show that Renyi entropy itself decomposes into two spectra that monitor rates of information loss
and accumulation. In particular, we fully characterize the range of possible SNESS thermodynamic
entropy-energy functions, giving new criteria for when a process’s ground state has positive entropy
rate. We explore fluctuations in SNESSs that are (i) maximum entropy rate, (ii) causally irreversible,
(iii) nonergodic, or (iv) infinite memory. The result is a constructive and comprehensive picture of
fluctuations in information processing and the balance of information generation and storage that
a given stochastic process achieves.

I. INTRODUCTION

Statistical fluctuations are to be expected in finite-
size, finite-dimensional processes and so, too, in SNESS.
Thus, the methods and results will be especially helpful
as one scales down to implement computing on increas-
ingly smaller-scale physical substrates. Moreover, they
introduce a new kind of time-series prediction that ex-
trapolates a process’s typical behaviors to determine the
likelihood of extremely low probability of events—events
not seen before.

Recall Bennett’s “Thermodynamics of Computation”
[1], which is largely an exposition, with little or no theo-
retical development, on why it is an important and long-
standing goal to view information processing in natural
systems. Here, we lay out one part of a statistical me-
chanics framework for this that allows one to analyze a
wide class of complex nonlinear processes in terms of the
range or fluctuations in information processing they ex-
hibit.

A complementary statistical mechanics approach iden-
tifies emergent macrostates [2–4].

Recall Bowen, Ruelle, and others’ work in abstract dy-
namical systems to understand the complex and strange
invariant sets they generate via the “thermodynamic for-
malism” [5–8]. The idea there was to adapt statistical
physics to describe the complex temporal behavior and
associated invariant state-sets. In a sense, a dynamical
system unfolding in time is considered to be a spin-like
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like system in space—the lattice of time becomes the lat-
ter’s spatial lattice.

Here, we’d like to provide a constructive framework for
that formalism. Refs. [9], [10], and [11], and [12] are read-
able introductions, in this spirit. The particular emphasis
that is new here is the focus on measures of organization
and structure and how these affect the thermodynamics
of information processing, especially how fluctuations are
affected in processes with memory.

This particular emphasis goes under the rubric of in-
trinsic computation—that all systems store, transform,
and dissipate information [13].

Real world connection: Technology builds ever-smaller
computational devices commandeering nonlinear physi-
cal phenomena on increasingly smaller spatial scale and
shorter time scale processes.

We assume we have a canonical model of the behav-
ior of such an engineered device. We will use ε-machines
as the canonical representation [13, 14]. It is the (unifi-
lar) minimal open predictor and it allows one, as we will
demonstrate, to calculate many of the device’s informa-
tion processing properties.

Or, we may wish to analyze a naturally occurring
nanoscale thermodynamic system—such as a “smart”
biomolecule that does useful work, like kinesin’s role in
intracellular transport—in terms of how it stores and pro-
cesses information.

In either case, we start with the system’s ε-machine.
Say what we mean by “fluctuation”: Sample variation

in event probabilities. The reference for this are the typ-
ical sets of information theory: The events that one typ-
ically sees. Events and their probabilities lying outside
this set are fluctuations or, sometimes, “deviations”.

Real world connection: Small scale thermodynamic
systems are typically dominated by fluctuations. Here,
we consider intrinsically generated fluctuations that are

mailto:caghamohammadi@ucdavis.edu


2

Head Tailp

1− p
1− p

p

FIG. 1. Markov chain presentation for the Biased Coin Pro-
cess with bias p.

part and parcel of the stochastic process.
What tools are available to analyze statistical fluctua-

tions?
Recently, the fluctuation relations of Gallavotti, Co-

hen, Jarzynski, and Crooks [15–19].
Large deviation theory [20] is a relatively new and nec-

essary tool that gives insight into the full range of sta-
tistical fluctuations, in particular those well outside the
domain of the Law of Large Numbers.

Presaged by the theory of types (Shannon-McMillman-
Breiman theory) in information theory [21].

And by the thermodynamic formalism [6] of dynamical
systems theory.

But, in truth, the basic ideas reside in Gibb’s original
ensemble formulation of statistical mechanics. And this
was pointed out in Ref. [22].

Given that an ε-machine is the minimal sufficient
statistic for a given process, in principle every quantity
is calculable from it. Here, we show how to calculate the
full spectrum of fluctuations from a process’s ε-machine.
The practical result is a set of methods that allow one
to efficiently and directly calculate a process’s spectrum
of fluctuations. Conceptually, the result is a new view
of how process information and structure are two, and
necessarily complementary, aspects of fluctuation phe-
nomena.

II. WHAT’S THE ISSUE?

Consider the lowly biased coin. This process is gener-
ated by the Markov chain shown in the Fig. 1.

After running the machine, it generates a sequence of
Heads and Tails. Here we would like to study that the se-
quences and fluctuations in the probabilities. One simple
way to study this is to plot word distribution histograms
for `-length words.

To study the words with the length n in the time series
let’s consider a one to one map between yni and qni which
is defined by:

qni =

n∑
j=0

xi+j2
j

With this definition we study qni instead of yni without
losing any generality. Figure (2) shows histogram esti-
mated from generated time series.

Give as thorough a direct introduction to thermody-
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FIG. 2. Biased Coin Process word distributions Pr(w0:`) for
` = 1, 2, . . . , 9. Histograms of word counts are plotted by
on the unit interval by metrizing sequences: Heads and Tails
mapped to 1s and 0s, respectively, and translated to x ∈ [0, 1]

via x =
∑`−1

0 wi2
−i−1. Bias is p = 0.6.
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FIG. 3. Biased Coin Process statistical fluctuation histogram
construction: energy levels and how histogram envelope ap-
proximates S(U). Bias is p = 0.3, word length ` = 12. Al-
though there are 4096 = 2` sequences, there are only 11 dis-
tinct sequence probabilities: pn(1 − p)(`−n), n = 1, . . . , 11.
The lower asterisk locates the single most probable sequence
of all Tails, which has the lowest energy. The upper one,
the least likely sequence of all Heads, which has the highest
energy.

namics as one can for the Biased Coin.
The biased coin, however, is an unstructured process.

As all IID processes are.
Lead into structured processes: Use the Golden Mean

Process. See the Markov chain in Fig. 4.
See the word distributions in Fig. 5.
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FIG. 4. Markov chain that generates the Golden Mean
Process—a binary process with no consecutive 0s.
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FIG. 5. Golden Mean Process word distributions Pr(w0:`) for
` = 1, 2, . . . , 9. 107 iterates and self-loop transition probabil-
ity p = 0.6.

Structure corresponds to restrictions. In the case of
the Golden Mean Process consecutive 0s are not allowed,
otherwise all sequences are generated.

Thus, a central question here is how this kind of struc-
ture interacts with that seen in the sequence probabilities
fluctuations. Fractal structure occurs in both.

The development is broken into four parts: intrinsic
computation, thermodynamics of computation, fluctua-
tion spectra, and large deviations. It ends with exten-
sions and concluding remarks.

III. INTRINSIC COMPUTATION

A. Background

We assume the reader has basic knowledge of thermo-
dynamics and statistical mechanics, information theory,
and large deviations, such as found in the introductory
chapters of Refs. [23], [21, esp. Ch. 11], and [20], re-
spectively. The extension of basic information theory to

complex processes is reviewed in Ref. [24]. Our devel-
opment makes particular use of ε-machines, a canonical
representation of a process that makes many properties
directly and easily calculable; for a review see Ref. [14,
and citations therein]. The current development reviews
and then updates and extends the analysis of fluctuations
previously developed in Ref. [25].

1. Processes

We denote subsequences in a time series as Xa:b,
where a ≤ b, to refer to the random variable chain
XaXa+1Xa+2 · · ·Xb−1, which has length b− a. We drop
an index when it is infinite. For example, the past X−∞:0

is denoted X:0 and the future X0:∞ is X0:. We generally
use w = w0w1 . . . w`−1 to denote a particular realization
or word—a sequence of symbols wi drawn from a finite
alphabet wi ∈ A. All of the words w of length ` are those
w ∈ A`. We place two words, u and v, adjacent to each
other to denote concatenation: w = uv.

Let’s define the distribution of words Pr(w) over A∞,
assuming we have infinite number of measurements.
Given a specific word w, we have its associated set of
infinite sequences, its `-cylinder :

sw = {x: : x0 = w0, ..., x`−1 = w`−1 , x: ∈ A∞} .

The collection of all cylinders at length ` is:

s` =
⋃

w∈A∞
sw .

The probability of specific word w, then, is:

Pr(w) =
‖sw‖
‖s`‖ . (1)

Given a finite data stream x0:k−1, k � `, one estimator
for Pr(w) is:

Pr(w) ≈ N(w)

k − `+ 1
,

where N(w) is the number of occurrences of w in x.
Informally, a process is a joint probability distribution

Pr(X:) over the bi-infinite chain X: = X:0X0:. Formally,
it is the probability space

(
A∞,Σ,P

)
, where Σ is the σ-

algebra generated by the cylinder sets in A∞ and P is
the measure defined by Eq. (1).

The finitary processes we consider are useful descrip-
tions of a wide range of systems: spin systems, sym-
bolic dynamics of chaotic dynamical systems, and coarse-
grained continuous systems, to mention a few broad
classes.
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2. ε-Machine Presentations

A presentation of a given process is any state-based
representation that generates the process: it produces
all of and only the process’s words and their proba-
bilities. In the following we consider processes gener-
ated by finite hidden Markov models (HMMs). For
a given process, while there may be many alternative
HMMs, there is a unique, canonical presentation—the
process’s ε-machine. The recurrent states S of a pro-
cess’s ε-machine are known as the causal states σ ∈ S
and, at time t, the associated random variable is St. The
causal states are the minimal sufficient statistic of the
past X:0 for predicting the future X0:.

An ε-machine is a type of HMM satisfying three con-
ditions: unifilarity, probabilistically distinct states, and
irreducibility. Unifilarity means that from each state σ
there is at most one next state reached on a given sym-
bol x [27]. Probabilistically distinct states means that for
every pair of states—say, σ1 and σ2—there is at least
one word w for which the probabilities of observing w
starting from those states differ: Pr(w|σ1) 6= Pr(w|σ2).
Irreducibility implies that the internal Markov chain over
the causal states is strongly connected and minimal in
the sense that it is not possible to make a smaller unifi-
lar HMM that generates the process. For a thorough
treatment on presentations and ε-machines see Ref. [28].

When an ε-machine has a finite or countable number
of causal states it is often helpful to represent it in a state
transition diagram, as shown in Fig. 6, consisting of a
set of states connected by directed, labeled transitions.
There is a unique initial (or start) state depicted with
two concentric circles, a set of transient states that have
asymptotic probability zero, and set of recurrent states
with positive asymptotic probability. For each transition
between states σi and σj , there is a transition probability
Pr(σj |σi) that gives the probability of going from state σi
to state σj . On making the transition, the process emits
symbol xij ∈ A. A realization x0x1 . . . xt . . . is generated
starting in state σ0 and following transitions according
to the specified probabilities and emitting the symbols
xt labeling the transitions visited.

At time t our knowledge of a process’s internal state is
given by the state distribution:

〈ηt| = 〈Pr(σ0),Pr(σ1), . . . ,Pr(σN )| .

As an alternative to starting in σ0, we can also specify an
initial state distribution η0. A stochastic transition ma-
trix describes the state-to-state transitions as a Markov
chain:

T :=
∑
x∈A

T (x) , (2)

where the transitions on a given symbol x are:

T
(x)
ij = Pr(σj , x|σi) ∈ [0, 1] ,

σ0

σ1 · · · σi

σ2 · · · σj

p01|s01

p00|s00

p02|s02

pij |sij

pii|sii

pji|sji

pjj |sjj

FIG. 6. State transition diagram for an ε-machine depict-
ing the unique start state (double circled σ0), a set of tran-
sient states {σ0, σ1, σ2, . . .}, and a set of recurrent states
{σi, σj , . . .}. Transition labels p|x denote the probability p
of taking the transition and emitting symbol x.

for i, j = 1, . . . , N . The transition probabilities are
normalized. That is, the transition matrix T is row-
stochastic [29]:

N∑
j=1

∑
x∈A

Pr(σj , x|σi) = 1 .

Its component matrices T
(x)
ij are said to be substochastic.

Unifilarity means that at most one component in a row

of T
(x)
ij is nonzero and that Pr(σj , x|σi) = Pr(x|σi).

An ε-machine’s connection matrix T0 has components(
T0

)
ij

that give the number of transitions from state σi
to σj .

By way of summarizing, we have the main object that
generates a process.

Definition 1. The ε-machine M is the set
{
S, {T (x), x ∈

A}, 〈η0|
}

.

Our goal is to understand the statistical structure of a
process’s sequences in terms of its ε-machine’s calculable
properties.

3. Stationarity

Since T is stochastic its principal eigenvalue is unity
and so state distributions evolve according to:

〈ηt| = 〈ηt−1|T , (3)

where T is the time evolution operator of Eq. (2). Often
we are interested in the asymptotic invariant solution 〈π|
of Eq. (3)—the eigenvector of T associated with eigen-
value λ = 1. For general such transition matrices, the all
eigenvalues have magnitude less than or equal to one.

At large times and for the class of processes here, start-
ing with any initial 〈η0|, the system approaches the in-
variant distribution 〈π|. If one starts an ε-machine in
state distribution 〈π|, then the process generated is sta-
tionary: Pr(Xt:t+`) = Pr(X0:`), for all t and `.



5

For a given process, we calculate the word probabilities
in terms of it’s ε-machine:

Pr(w) = Pr(x0:`)

= 〈π|T (x0)T (x1) · · ·T (x`−1) |1〉 , (4)

where |1〉 is a vector whose elements are one.

B. Information Measures

Now let’s review several important information mea-
sures that elucidate the various kinds of complexity gen-
erated by SNESSs.

1. Topological Entropy

Let N(`) denote the number of length-` words w ∈ A`
a given process generates: Pr(w) > 0. If all possible
distinct words of length of ` are generated, then N(`) =
|A|`. For typical processes there are restrictions and so
not all words are generated. In this case, N(`) scales
differently and this is captured by its growth rate—the
topological entropy :

h := lim
`→∞

log2N(`)

`
. (5)

Simply said, we have the scaling N(`) ∝ |A|h`.

2. Shannon Information Measures

Rather than simply counting words, we can examine
how much information they carry. Shannon defined the
self-information of an event, such as the occurrence of
word w, as − log2 Pr(w). This leads to the total amount
of information in length-` words, the block entropy :

H(`) := −
∑
{w∈A`}

Pr(w) log2 Pr(w) . (6)

Note that if the words that occur are equally likely, then
H(`) = log2N(`). A process’s Shannon entropy rate is
speed at which the block entropy grows:

hµ := lim
`→∞

H(`)

`
. (7)

Paralleling the topological entropy, the block entropy
scales as H(`) ∝ hµ`. hµ measures a process’s rate of
information production and, so, its degree of random-
ness. If the process is generated by a dynamical system,
then hµ is the Kolmogorov-Sinai entropy or metric en-
tropy [31–33].

The Shannon-McMillan-Breimen theorem indicates
why the Shannon entropy rate is an important pro-

cess characteristic [21]. It governs the exponential de-
cay of the probability of typical realizations: Pr(w) ∝
|A|−H(`) ∝ |A|−hµ`. We return to this topic later in
when discussing the typical behaviors of processes and
deviations from them.

3. Predictable Information

Complementary to production or randomness rate hµ,
another key Shannon measure is the amount of informa-
tion that a process communicates from its past to its
future. In other words, we view a process as a com-
munication channel: The system in the present moment
communicates information from its past to its future.
Information-theoretically we measure this as a mutual
information between the past and future with the excess
entropy :

E = I[X:0;X0:] . (8)

E is an information transmission rate through a system
when the past is taken as the channel input.

4. Information Relations

Together, the various information measures give a
rather complete description of the kinds of intrinsic com-
putation embedded in a process. However, they are not
independent. First, note that entropy rate hµ is equiva-
lent to:

hµ = H[X0|X:0] .

And, this form makes clear it’s interpretation as the in-
stantaneous Shannon information (surprise) generated in
the present.

Recently, using this form Ref. [34] introduced a new
and functional decomposition of hµ into a component—
the ephemeral information rµ—giving the part of the
generated information dissipation and a component—the
bound information bµ—giving the part that is actively
stored. In short:

hµ = rµ + bµ ,

where rµ = H[X0|X:0, X1:] and bµ = I[X0;X1:|X:0].
Thus, some of the information generated (hµ) in the
present is dissipated (rµ) and some (bµ) is actively stored.
In particular, the excess entropy decomposes into the
atoms:

E = bµ + qµ + σµ ,

giving a more refined understanding of its constituents.
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C. The ε-Machine Mesoscale: Where Information
and Structure Meet

We now show that the preceding macroscopic measures
can be directly calculated from a process’s ε-machine. We
state the main results, relegating their proofs to Appen-
dices A 1.

General points: ε-machine causal states capture the
emergent structure in microstates. In that sense, one
can interpret them as capturing macroscopic properties.
We prefer and find it less terminologically confusing to
think of the ε-machine as describing an intermediate—
mesoscopic—level of system organization. This allows
us room to still make distinctions with the traditional
macroscale of temperature, pressure, and free energies.
There will also be new macroscopic variables: Cµ, E,
and the like.

It can be shown that [35] a process’s topological en-
tropy is:

h = log2 λmax , (9)

where λmax is the largest eigenvalue of its ε-machine’s
connection matrix T0.

Theorem 1. A process’ Shannon entropy rate can be
directly calculated from its ε-machine using:

hµ = −
N∑
i=1

Pr(σi)
∑
x∈A

Pr(x|σi) log2 Pr(x|σi) . (10)

Proof. See App. A 1.
Although we can now calculate them from a process’s

ε-machine, these rates were initially defined in terms of
process realizations and their probabilities. They are, in
this sense, statistics of the observable process. However,
a process’s ε-machine also gives insight into a process’
internal structural organization. For example, there is
a certain amount of memory stored by a process in its
causal states related to how much if its past it remembers.
This is measured by the statistical complexity Cµ:

Cµ = −
N∑
i=1

Pr(σi) log2 Pr(σi) , (11)

which is the amount of Shannon information in the causal
state distribution.

Finally, the past-future mutual information, which oth-
erwise is a complicated quantity involving the semi-finite
chain of past X:0 and future X0: random variables, re-
ceives a particularly elegant form when expressed in
terms of the ε-machine. Specifically, it was recently
shown that E is the mutual information between the
forward-process and reverse-process ε-machines [36–38]:

E = I[S−;S+] , (12)

where, in effect, we substituted the forward and reverse
causal states for the semi-infinite past and future in Eq.
8.

Finally, we use the ε-machine to calculate the
ephemeral and bound informations:

rµ = H[X0|S−0 ,S+
1 ] (13)

and:

bµ = I[X0;S+
1 |S−0 ] , (14)

where X0 is the present random variable, S+
1 is the

causal state at time t = 1, and the other (reverse-
time) causal-state variable is anchored at time t = 0.
These information measures require the joint distribu-
tion Pr(S−0 , X0,S+

1 ), which is readily determined from a
process’ bimachine [39].

Although we don’t avail ourselves directly of it, a new
approach was recently developed that gives closed-form
expressions for the excess entropy and the other infor-
mational measures in terms of the ε-machine’s spectral
decomposition [40].

IV. THERMODYNAMICS OF INTRINSIC
COMPUTATION

In contrast to the informational view of a system,
thermodynamics largely concerns how various kinds of
macroscopic system energy are transformed to and from
uncontrollable, unmeasurable thermal energy at micro-
scopic scales. A given system has a total amount U of
energy, only some of which is thermal (TS). To the ex-
tent there is a difference—some of the total energy is
not thermalized—then there is a possibility of recover-
ing some for use on the macroscale. This difference is
measured by the free energy F = U − TS.

The abiding question in classical thermodynamics then
boils down to describing thermalized energy. The main
answer is that it is, in some way, energy in degrees of free-
dom that behave in a disordered or randomized manner.
(However, those descriptors rather beg the question.)

The mapping we make to temporal systems is that
individual sequences are system configurations and con-
figuration energies are directly determined by sequence
probabilities. Then, we ask for the corresponding macro-
scopic quantities—such as total energy, entropy density,
and free energy. System size is sequence length ` and se-
quences w are microstates—microscopic configurations.

A. Energy and Entropy Density

To each word w ∈ A` one associates an energy density:

U `w :=
− log2 Pr(w)

`
, (15)
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mirroring the Boltzmann weight common in statistical
physics: Pr(w) ∝ e−U(w). The total energy in a system of
size ` is U ` =

∑
w: Pr(w)>0 U

`
w. In this setting, disallowed

words (Pr(w) = 0) have infinite energy.
Naturally, different words w and v may lead to same

energy density, U `w = U `v . And so, in the set U ` ={
U `w : w ∈ A`

}
, energy values may appear repeatedly.

Let’s denote the frequency of equal U `ws byN(U `w). Then,
for the thermodynamic macrostate at energy U , we define
the thermodynamic entropy density :

S(U) := lim
`→∞

log2N(U `w = U)

`
(16)

to monitor the range and likelihood of accessible energies
(or allowed words). This definition closely mirrors that
in the standard statistical physics, where the thermody-
namic entropy is proportional to the logarithm of number
of accessible microstates. Energy in this formal setting
is a proxy for parametrizing classes of equal-probability
sequences.

B. Renyi Entropy Rate and Partition Function

Shannon block entropy is a linear average of the self-
informations − log2 Pr(w). The Renyi block entropy is an
extension that is the most general entropy that is both
additive over independent distributions and a geometric
average [41]:

Hβ(`) := Hβ [X0:`] (17)

:=
1

1− β log2

∑
{w∈A`}

(Pr(w))β , (18)

where β is an arbitrary real number that “focuses” on
word subsets parametrized by probability (or energies
− log Pr(w)). In this, we see that β is analogous to in-
verse temperature and we can interpret the sum as the
partition function:

Z(β) =
∑
{w∈A`}

e−β(− ln Pr(w)) . (19)

Paralleling hµ, we have the block entropy growth rate,
the Renyi entropy rate:

h(β) := lim
L→∞

Hβ(`)

`
. (20)

C. Thermodynamic Relations

The thermodynamic measures are closely interrelated
and those relations tell us much about a process’s struc-
ture and randomness. We review well known properties,
adapted to processes. Appendices A 2, A 3, and A 4 give
proofs.

Lemma 1. The topological and Shannon entropy rates
are special cases of the Renyi entropy rate:

h = h(β = 0)

and

hµ = h(β → 1) ,

respectively.

Proof. See App. A 2.

Lemma 2. The Renyi entropy rate h(β) and thermody-
namic entropy density S(U) are related by:

S(U(β)) = βU(β)− (β − 1)h(β) , (21)

where:

U(β) = argmax
u∈U∞

(S(u)− βu) . (22)

Proof. See App. A 3.

Lemma 3. The energy density and Renyi entropy are
related by:

U(β) =
∂

∂β
((β − 1)h(β)) . (23)

Proof. See App. A 4.
There are two important cases that help interpret the

entropy S(U). First:

S(U(β = 0)) = h(0)

and second:

S(U(β = 1)) = hµ .

Later we show that dU/dβ ≤ 0, concluding that the
inverse function β(U) exists. And so, we can define free
energy density via a Legendre transform of the thermo-
dynamic entropy density:

−βF (β) = S(U)− U(β(U)) . (24)

immediately the direct consequence of 2 would be

F (β) = −β−1 log λ̂β . (25)

D. How to calculate fluctuation spectra

For a given ε-machine calculating fluctuation spectra
from eq.16 generally is a hard thing to do. Here we build
a tool to make this task much easier.
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In section IV C we parameterized S and U in terms
of β and that means for a given process for every real β
there exist a unique U and it’s S.

In a next lemma we will show that S(U(β)) is nothing
other than metric entropy over the twisted distribution.

Lemma 4. S(U(β)) in Eq. (2) can be written as:

S(U(β)) = − lim
`→∞

1

`

∑
{w∈A`}

Qβ(w) logQβ(w) .

with twisted distribution:

Qβ(w) =
(Pr(w))β

Z(β)
.

Proof. Using Eqs. (23) and (A5) we have:

U(β) = − lim
`→∞

1

`

∑
{w∈A`}(Pr(w))β log(Pr(w))

Z(β)
.

Using Eqs. (20) and (19) we rewrite Renyi entropy as:

h(β) :=
1

1− β lim
`→∞

1

`
Z(β) .

Using this relation and Eq. (21) we can rewrite S(U(β))
as:

S(U(β)) = − lim
`→∞

1

`

∑
{w∈A`}

(Pr(w))β

Z(β)
log

(Pr(w))β

Z(β)
.

Identifying the twisted distribution completes the proof.
The result is that S(U(β)) basically is a metric entropy

for a new twisted distribution Qβ(.). Now, if we could
find and introduce a new process that could generate the
words with this new distribution, then we could easily
calculate the S(U(β)) by the result of theorem 1.

Now for every β we introduce a new process that gen-
erate twisted distribution. The key step is to define β-
parametrized transition matrix:(

T
(x)
β

)
ij

= eβ ln Pr(x|σi)

=
(

Pr(x|σi)
)β

.

Then the associated causal-state transition matrix is:

Tβ =
∑
x∈A

T
(x)
β .

Taking lβ (rβ) as the left (right) eigenvector of Tβ , asso-
ciated with λβ :

lβTβ = λβlβ (26)

Tβrβ = λβrβ . (27)

If the eigenvectors are chosen such that:

lβ · rβ = 1 , (28)

then:

(Tβ)ij = λβ(rβ)i(lβ)j . (29)

In this form, the Renyi entropy rate for the process
generated by an ε-machine is simply [42]:

h(β) =
log λ̂β
1− β , (30)

where λ̂β is the maximum eigenvalue of Tβ .
Tβ is not a stochastic matrix, but one may renormalize

it to define a new matrix that is right-stochastic by a
mapping Mβ : T→ Sβ given by:

(Sβ)ij =
(Tβ)ij(r̂β)j

λ̂β(r̂β)i
, (31)

where the component (substochastic) symbol-labeled
transition matrices, for each x ∈ A map to a new sub-
stochastic matrices by Mx

β : Tx → Sxβ :

(
S

(x)
β

)
ij

=

(
T

(x)
β

)
ij

(r̂β)j

λ̂β(r̂β)i
. (32)

Lemma 5. Sβ is row-stochastic:∑
j

(Sβ)ij = 1 .

Proof.∑
j

(Sβ)ij =
∑
j

(Tβ)ij(r̂β)j

λ̂β(r̂β)i
=

∑
j(Tβ)ij(r̂β)j

λ̂β(r̂β)i

=
λ̂β(r̂β)i

λ̂β(r̂β)i
= 1 .

So each row of Sβ sums to 1. Sβ is a transition matrix
and the magnitudes its eigenvalues are less than or equal
to one. It has at least one eigenvalue equal to one and
the corresponding eigenvector is:

(Pβ)i = (r̂β)i(̂lβ)i . (33)

Definition 2. The thermodynamic ε-machine at inverse

temperature β is the family M(β) =
{
Sβ , {S(x)

β , x ∈
A}, η0

}
.

Lemma 6. If the probability of an arbitrary word gener-
ated by process M is Pr(w), the probability of the same
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word when generated by M(β), as defined by def. 2, is:

Qβ(w) =
(Pr(w))β

Z(β)
. (34)

Proof. Let us consider two arbitrary words w1 and w2

with length `. The probabilities of generating these words
by process Sβ, PrSβ (w1), and PrSβ (w2) can be written
as:

Pr
Sβ

(w1) = (Pβ)i1

n−1∏
a=1

(Sβ)iaia+1
,

Pr
Sβ

(w2) = (Pβ)j1

n−1∏
b=1

(Sβ)jbjb+1
.

Using Eq. (31) we can write the ratio of these two as:

PrSβ (w1)

PrSβ (w2)
=

(Pβ)i1
∏n−1
a=1

(Tβ)iaia+1
(r̂β)ia+1

λ̂β(r̂β)ia

(Pβ)j1
∏n−1
b=1

(Tβ)jbjb+1
(r̂β)jb+1

λ̂β(r̂β)jb

=
(Pβ)i1

(r̂β)in
(r̂β)i1

∏n−1
a=1 (Tβ)iaia+1

(Pβ)j1
(r̂β)jn
(r̂β)j1

∏n−1
b=1 (Tβ)jbjb+1

.

Now, using Eq. (33) we have:

PrSβ (w1)

PrSβ (w2)
=

(̂lβ)i1(r̂β)in
∏n−1
a=1 (Tβ)iaia+1

(̂lβ)j1(r̂β)jn
∏n−1
b=1 (Tβ)jbjb+1

.

We also could rewrite (̂lβ)i1(r̂β)in as:

(̂lβ)i1(r̂β)in =
(Tβ)i1in
λβ

(̂lβ)j1(r̂β)jn =
(Tβ)j1jn
λβ

,

a direct result of Eq. (29). Using these we have:

PrSβ (w1)

PrSβ (w2)
=

(Tβ)i1in
∏n−1
a=1 (Tβ)iaia+1

(Tβ)j1jn
∏n−1
b=1 (Tβ)jbjb+1

=

{
(T)i1in

∏n−1
a=1 (T)iaia+1

(T)j1jn
∏n−1
b=1 (T)jbjb+1

}β
.

For β = 1 we have:

PrT (w1)

PrT (w2)
=

(T)i1in
∏n−1
a=1 (T)iaia+1

(T)j1jn
∏n−1
b=1 (T)jbjb+1

.

And, this means:

PrSβ (w1)

PrSβ (w2)
=

(
PrT (w1)

PrT (w2)

)β
.

Since this is true for every pair of arbitrary w1 and w2

the proof is complete.
The result of this theorem is when we use Mβ : T →

Sβ to map our process T to a new process Sβ we twist
the distribution of words generated by T in the way that
we wanted in lemma. 4.

Theorem 2.

S(U(β)) = hµ(M(β)) , (35)

Proof. The proof is a straight forward result of lemma.
4 , theorem. 6 and eq. 7.

Using theorem 2 from now on we have a powerful tool
to calculate fluctuation spectra for a given process.

E. ε-Machine Thermodynamics

Section III C concerned average macroscopic informa-
tional quantities and how to express them in terms
of a process’s ε-machine—a more detailed, structural
mesoscale description. As such, it ignored deviations or
fluctuations in these quantities. The preceding section,
however, define the spectra of fluctuations in terms of
S(U) which allows us to we analyze a process’ temporal
fluctuations using its ε-machine, following the approach
introduced in Ref. [25].

As we showed the thermodynamic entropy density is
the entropy rate of the new renormalized ε-machine at
inverse temperature β. As β is varied we monitor the
relative “size” of the fluctuation process at that temper-
ature.

In a similar way, we monitor the stored information in
the fluctuation processes by calculating the ε-machine’s
statistical complexity Cµ at each β. Via Eqs. (11) and
(33), we have the statistical complexity fluctuation spec-
trum:

Cβ = Cµ(M(β))

= −
N∑
i=1

(Pβ)i log2(Pβ)i .

In parallel, we have the spectrum of predictable informa-
tion E fluctuations:

Eβ = E(M(β))

= I[S−β ;S+
β ] ,

where we replaced the semi-infinite past and future in
Eq. 12 with M(β)’s forward and reverse causal states,
respectively. Finally, a similar substitution leads us to
the spectra of ephemeral and bound informations:

rβ = rµ(M(β))

= H[X0,β |S−0,β ,S+
1,β ]



10

Hβ [X:0] Hβ [X1:]

Hβ [X0]

rβ

bβbβ

qβ

σβ

FIG. 7. Thermodynamic information diagram—the analog
of the information diagram of Fig. 8 of Ref. [34]–but for
the family of processes generated by the inverse-temperature
β-parametrized ε-machine.

and:

bβ = bµ(M(β))

= I[X0,β ;S+
1,β |S−0,β ] ,

where X0,β is the present observed variable generated
by M(β). Here, S+

1,β is its causal state at time t = 1,

whereas the other, S−0,β , is the causal state anchored at
time t = 0 of the time-reversed ε-machine.

Figure 7 summarizes the relationship between these
various measures in what is called an information dia-
gram; cf. Ref. [34]’s Fig. 8. Information diagrams,
similar to Venn diagrams, aid in interpreting informa-
tion relation between variables. There are two differences
between them. First, instead of set size the measure
is Shannon entropy and Second, here an overlap inter-
prets as an mutual information rather than set intersec-
tion. Those intersections which are irreducible are called
atoms and size of them reflect the Shannon information
measures. The name atoms is used because they are ele-
mentary atoms of sigma-algebra over the random variable
space.

F. Stability and Convexity

In thermodynamics the condition of stability of macro-
scopic states [23] for an ideal gas, for example, is that:(

∂2S

∂U2

)
N,V

≤ 0 . (36)

This means that for stable thermodynamic states, S
should be a convex function of U . This comes from
the assumption that entropy is maximized for the sta-
ble equilibrium state (among other possible macrostates)
and that the entropy of a composite system is the sum
of the entropies of its constituent subsystems.

For systems with finite degrees of freedom the con-

Ap|1 1− p|0

FIG. 8. Biased Coin Process ε-machine.

vexity condition of entropy leads to a maximum for the
entropy, if approaching the maximum for positive tem-
perature T → ∞. There is also a maximum value for
energy, which corresponds to a region of negative tem-
perature.

Let’s check whether these parallels are meaningful and
useful.

Theorem 3. S(U) is a convex function of U , where the
former is given by Eq. (16), the latter by Eq. (22).

Proof. See App. A 5.
Thus, for positive (negative) β, S is an increasing (de-

creasing) function of U . And, there is unique maximum
for S, where β vanishes. If the support of S is finite there
is a region [Umin, Umax], for which S is nonzero. This
means a typical shape for S(U) is seen in Fig. V A 1.

V. FLUCTUATION SPECTRA

A. Examples

Let’s investigate SNESSs that reveal what is captured
by fluctuation spectra—several are well known processes
and we compare the results with the analytical ones.

1. Biased Coin Process

Recall the Biased Coin Process from the Introduction
and its Markov chain presentation in Fig. 1. The latter
should be compared to the ε-machine (unifilar minimal
hidden Markov chain) presentation in Fig. 8, which has
only one state.

Now using the method introduced in section 5, let’s
study the fluctuation spectral density (FSD) for biased
coin by investigating its ε-machine structure. Figure
(V A 1) shows the results.

Spectrum of statistical complexity Cβ , Trivially, van-
ishes, due to ε-machine having a single states.

Spectrum of excess entropy Eβ vanishes trivially, due
to Biased Coin Process being IID and does not have any
correlation.

All IID processes have such spectra.

2. Golden Mean Process

This process is define by the Markov chain presentation
in Fig. (4 or the ε-machine presentation Fig. (10).
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)

FIG. 9. FSD for biased coin, p=0.4. Add Umin, Umax, h, hµ,
and lines for unity and zero slope.

A Bp|1

1− p|0

1|1

FIG. 10. Golden Mean Process ε-machine.

After running the machine, It generates a time series.
Here we do the same approach and figure (5) and (11)
show the results. As we see, the pattern 00 is absent in
the time series (e.g. see the case ` = 2).

As it is seen, when we decrease P , first the set of ener-
gies with non zero S decrease till reach the minimum set
and then increase. Let’s consider this model analytically.

An+1 = pAn +Bn, (37)

Bn+1 = qAn. (38)

The matrix T is a left stochastic matrix defined as

T :=

(
p q
1 0

)
, (39)

At nth step one may arrive at

An =
1− (−q)n+1

1 + q
, (40)

Bn =
q + (−q)n+1

1 + q
. (41)

At large times where the system approaches to its sta-

tionary values

lim
n→∞

An ∼
1

1 + q
, (42)

lim
n→∞

Bn ∼
q

1 + q
. (43)

Now let’s define

(Tβ)ij := exp(β lnPvi→vj )⇒
(
pβ qβ

1 0

)
, (44)

Eigenvalues and eigenvectors of Tβ are

lβTβ = λβlβ (45)

Tβrβ = λβrβ . (46)

This matrix is not an stochastic matrix, but one may
construct a right stochastic Sβ from it. It can be easily
shown that

λβ,max = λ1 :=
1

2
[pβ +

√
p2β + 4qβ ],

λ2 :=
1

2
[pβ −

√
p2β + 4qβ ],

l̂β =
1

λ1 − λ2

(
1 −λ2

)
,

r̂β =

(
λ1

1

)
,

Sβ =

λ1+λ2

λ1
−λ2

λ1

1 0

 .

and

S(U(β)) =
1

λ1 − λ2
{(λ1 + λ2) log(λ1 + λ2)−

λ1 log λ1 − λ2 log(−λ2)}

U(β) =
1

β
{S(U(β))− log λ1} (47)

B. Fluctuations at Zero Temperature

Bet we have not fully characterized the shape of fluc-
tuation spectra. In particular, it is possible and even
common to have a huge multiplicity of ground states at
zero temperature. In this case, S(Umin) > 0. Interest-
ingly, this can also occur at the negative temperature
extreme, giving S(Umax) > 0. Here, we explore this, first
analytically and then through examples.
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FIG. 11.

FSD for Golden Mean Process
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FIG. 12.

Information measures versus Energy for Golden Mean
Process with p = 0.6

1. Submachine Dynamics

Lemma 7. A deterministic edge stays deterministic un-
der temperature variation. (See fig. 14.) That is, if
for β = 1: (Tβ)ij = 1, we have (Sβ)ij = 1 and
(Sβ)i,k 6=j = 0, for all β.

Proof.

If for k 6= j : (Tβ=1)i,k = 0

→ (Tβ)i,k = (0)β = 0

→ (Sβ)i,k = 0 . (48)

100 50 0 50 100 150
β

0.0

0.2

0.4

0.6

0.8

1.0
S

Cµ

E

bµ

rµ

FIG. 13.

Information measures versus β for Golden Mean
Process with p = 0.6

Also we have for all β:∑
l

(Sβ)il = 1 . (49)

These lead to:

(Sβ)ij = 1 . (50)

Lemma 8. Splitting isolated branching does not change
thermodynamic entropy density.

Consider an n-state machine, whose general shape is
similar to that in fig. 15 with transfer matrix T satisfying
condition:

Tk,n = 0 , (51)

for all k 6= i, n.
Let’s concentrate on the states i and n. We call this

part of machine as isolated branching. (See fig. 16.) Now
a new n+ 1 state machine may be introduced (see figure
17) where the state n is split to two distinct states n and
n+1 with transfer matrix T ′. There exists a T ′ in such a
way that the two machines produce the same time series.
So:

S′(U(β)) = S1(U(β)) . (52)

Proof. To guarantee the same thermodynamic entropy



13

i j
1|s

FIG. 14. Deterministic edge.

· · ·

i

n

k · · ·

· · ·p|1

1− p|0

q|s

FIG. 15. Portion of an ε-machine.

density define:

T ′ =



T ′in = p

T ′i,n+1 = 1− p
T ′a6=i,b6=(n,n+1) = Tab

T ′a6=i,b=(n,n+1) = 0

T ′a=(n,n+1),b = Tnb

T ′k,b 6=n = 0

T ′k,n = Tkn

. (53)

Lemma 9. Half and half isolated branching (fig. 16 with
p = 1

2) stays the same with temperature changes.

Proof. Considering lemma 8, one splits the state n to
two state n and n + 1, going from see fig. 15 to fig. 17,
without changing the thermodynamic entropy density:

j 6= n, n+ 1 : Tij = 0 .

So, we have:

∀β, j 6= n, n+ 1 : S2ij = 0 ,

i

j

1− p|0

p|1

FIG. 16. Isolated branching.

· · ·

i

n

k

n+ 1

· · ·

· · ·

p|1

1− p|0

q|s

FIG. 17. HMM 2.

And, this means:

∀β : S2in + S2i,n+1 = 1 .

Now, due to the symmetry we have in Eq. (53) for state
n and n+ 1 we have:

∀β ∈ Z : S2in = S2i,n+1 =
1

2
.

Conjecture. For Tij = p and Tik = 1− p which i and k
are different state, two things could happen. First there
exists a unique c which:{

p < c : Sijβ→∞ = 1

p > c : Sijβ→−∞ = 0
. (54)

And, this also means:{
p < c : Sikβ→∞ = 0

p > c : Sikβ→−∞ = 1
. (55)

second (Hidden symmetry case)

Sikβ→∞ = Sikβ→−∞ =
1

2
(56)

2. Ground States Without Fluctuations

As an example let’s look at the biased coin process.
This process at β →∞ and β → −∞ turns to machines
which are shown in figure 18 and 19.

For the next example let’s consider the golden mean
process. This machine has a unique ground state. As β
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A

1

FIG. 18. Biased coin process ε-machine, when β converge to
negative infinity and p < 0.5, or when β converge to infinity
and p > 0.5 a deterministic process

B

0

FIG. 19. Biased coin process ε-machine, when β converge to
negative infinity and p > 0.5, or when β converge to infinity
and p < 0.5 a deterministic process

approaches infinity, one may arrive at

S0β→∞ :=

(
0 1
0 0

)
, (57)

S1β→∞ :=

(
0 0
1 0

)
, (58)

Golden mean process at β → ∞ and β → −∞ turns
to machines which are shown in figure 20 and 21. As it
is seen these machine are completely deterministic. For
this process (and as we will show for similar processes)
the matrix elements of S0β→∞ and S1β→∞ are zero or
one. For any element which is equal to one, all the other
elements of the corresponding rows and columns are zero.
This means that in the limit β →∞ if we have a unique
ground state, machine converge to deterministic machine.

3. Nemo Process

Our third example is the Nemo Process, shown in fig.
22. Since the recurrent states simply permute upon ob-
serving a 0, the word 0000 . . . never reveals the current
state. This once again means that the process is non-

A1

FIG. 20. Golden Mean process ε-machine, when β converge

to negative infinity and p <
√
5−1
2

,or when β converge to

infinity and p >
√
5−1
2

, a deterministic process

A B

0

1

FIG. 21. Golden Mean process ε-machine, when β converge

to negative infinity, p >
√
5−1
2

,or when β converge to infinity,

p <
√

5−1
2

, a deterministic process

A

B C

p|1

1-p|0

0

1
2 |0

1
2 |1

FIG. 22. ε-Machine that generates the non-Markovian Nemo
Process; its Markov order is infinite. The Nemo Process
makes this perhaps clearer, however, since the recurrent states
permute into each other upon observing a 0. The transient
structure captures this explicitly: ABC maps back to itself
on a 0.

Markovian and has R =∞.
This process is define by the machine shown in the fig.

22. After running the machine, It generates a time series.
The results are summarized in fig. 23. The interesting
point of this process is it’s nonzero S(Umin). This means
the process has (highly) non-unique ground state. Figure
24 shows energy versus β for this process.

Table I shows the analytical result for tree different
example.

Considering Fig. 22 using Lemma7 and 8, edge BC
and two edges from C to A stay the same when we change
temperature. Using the conjecture (Eqs. (54) and (55))
for edge AA and AB there should be a unique c which
depending on the case (p > c or c > p) one of the edges
survive with probability 1 in one of the limits and the
other one survive in the other limits. This means depends
on p (p > c or c > p) we could have non uniqueness in
different limits. Using simulation one could find that
0.58 < c < 0.6 and there will be a sharp phase transition
in function S(U) when we change c around 0.59. (See fig.
25.)

For p < c one obtains:

S0β→∞ :=

0 1 0
0 0 1
1
2 0 0

 , (59)



15

TABLE I. Spectral Properties of Biased Coin, Golden Mean, and Nemo Processes

Process Cµ hµ h Umin Umax S(Umin) S(Umax)

Biased Coin 0.0000 1.0000 0.9710 0.7370 1.3219 0 0
Golden Mean 0.8631 0.6942 0.6935 0.6610 0.7370 0 0
Nemo (p = 1

2 ) 1.5000 0.75 1.5000 0.6669 1.0000 0.3347 0
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FIG. 23.

Information measures versus energy U for Nemo
Process.
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FIG. 24.

U(β) for Nemo Process.

S1β→∞ :=

0 0 0
0 0 0
1
2 0 0

 . (60)

(See fig. 27). This does not satisfy the above-mentioned
condition that leads to non unique ground states.
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S :   p=0.58

Cµ : p=0.58

S :   p=0.6

Cµ : p=0.6

FIG. 25.

Phase transition in the Nemo Process with changing p.

4. Persistent Symmetry

For an n state machine, whose general shape is some-
thing like fig. 15 and assuming p = 1

2 (having half and
half isolated branching), because of lemma 3, we will have
for all β ∈ Z:

S2ik = S2il =
1

2

Now, from eq. (??):

S2(U(β)) >(P2β )i((S2β )ik log (S2β )ik

+ (S2β )il log (S2β )il)

= (P2β )i log(2) = (P2β )i .

From eq. (52) we have for all β:

S1(U(β)) > (P1β )i .

This means that as β sends to positive or negative infinity
if the probability of being in the state i does not vanish,
there will be non unique ground states.

The simplest machine with lowest number of state
which have non unique ground state is shown in fig-
ure(28).

These general examples give us the idea that symmetry
in the limits of β is the reason behind non uniqueness.
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A

1

FIG. 26. Nemo Process ε-machine, when p < c ≈ 0.5898 and
β converge to negative infinity,or when p > c ≈ 0.5898 and β
converge to infinity, a deterministic process

A

B C

0

0

1
2 |0

1
2 |1

FIG. 27. Nemo Process ε-machine, when p > c ≈ 0.59 and
β converge to negative infinity,or when p < c ≈ 0.59 and β
converge to infinity.

For those cases which are shown in figs 15, 27 and 28
it is easy to see their symmetry. In these cases we have
symmetry in β = 1 in the ε-machine, and these symme-
tries survive for every finite β, although the other parts of
ε-machine change when β changes. If these symmetries
survive in the limits where β tends to positive or neg-
ative infinity then the system ends up with non unique
ground states in that limit. We call these type of symme-
tries, persistent symmetries, which survive without any
change for every finite changes in temperature. One of
the reasons behind non unique ground states are persis-
tent symmetries.
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B

1
2 |01

2 |1

p|1

1− p|0

FIG. 28. Two-state ε-machine, with nonunique ground states.
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FIG. 29. RRIP Process ε-machine.

0.45 0.50 0.55 0.60 0.65 0.70
U

0.0

0.5

1.0

1.5

2.0

S

Cµ

E

bµ

rµ

FIG. 30.

Information measures versus Energy for RRIP Process.

5. Hidden Symmetry

As it is discussed there should be symmetry at the lim-
its of β to have non unique ground states. In the case of
Persistent Symmetry not only we should have symmetry
at the limit but also we have it for all finite β’s. More
complex cases are those which do not have symmetry for
any finite β but surprisingly symmetry appears at the
limit of β. These type of processes are hard to find. An
example is the RRIP process which is defined by the ma-
chine shown in Fig. 29. Information measures for this
process summarized in Fig.30. As it is clear from Fig.
29 we don’t have any symmetry for finite β but at the
limits, when β approaches to negative infinity the system
end up with the Fig. 31 which has the symmetry. So we
say this process has hidden Symmetry.
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1
2 |0

1
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1|0

1|1
1|0

FIG. 31. RRIP ε-machine when β → −∞.

A

1|1

FIG. 32. RRIP ε-machine when β →∞.

6. Nonuniqueness at Positive and Negative Temperatures

S(U) is a nonzero convex function and U is positive
quantity. This means considering the behavior of S(U) in
two limits for the general shape of this function we could
have five cases: zero-zero, zero-non zero, non zero-zero,
symmetric non zero, non zero, asymmetric non zero, non
zero. For the first three cases we have biased coin, Nemo
(p < c), Nemo (p > c). For the forth case one could find
the example in figure (33)) and it’s S(U) in figure (34)
and for the fifth case one could find the example in fig.
(35)) and it’s S(U) in fig. (36).

A

BC

DE

1
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2 |11
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3 |0 01

FIG. 33. ε-machine with symmetric nonuniqueness in two
limits.
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FIG. 34.

FSD for ε-machine with nonuniqueness in two limits.
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FIG. 35. ε-machine with asymmetric nonuniqueness in two
limits.

C. Causally Irreversible Processes

Instead of prediction, one may be interested in retro-
diction: using the future to predict the past. To do this,
the formalism that we built is essentially unchanged and
one should just look at the measurements in the reverse
time direction. The causal states for revers process S−
could be different from causal states for forward process
S. We call a process causally irreversible if C−µ 6= C+

µ .
As an example let’s look at RIP process. This process
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FIG. 36.

FSD for the ε-machine with asymmetric nonuniqueness
in two limits.
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FIG. 37. RIP Process ε-machine

is defined by the machine which is shown in fig.37. RRIP
process which is shown in fig.29 describe this process
in the reverse time direction. Here forward process has
three causal states and reversed process has four causal
states. This process is causally irreversible. All informa-
tion measures for forward and reverse process except the
statistical complexity are equal as they are shown in figs.
38 .

Lemma 10. All the information measures which only
depend on probabilities of words Pr(wL)’s that are gen-
erated by process are equal for forward and reveres pro-
cesses. e.g. E, hµ, bµ and rµ

Proof. Considering an arbitrary process T and it’s re-
verse process TR, the probability of every word w which is
generated by T is equal to the probability of it’s reversed
word wR which is generated by TR. This means we will
have the same probability distributions over set of words
for T and TR by just changing the labels. Now that they
have the same distributions all functions of these distri-
butions would be equal for T and TR.
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C
µ
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FIG. 38.

Statistical complexity versus Energy for RIP and RRIP
Process.

VI. LARGE DEVIATIONS ... BEYOND THE
TYPICAL SET

Quick motivation of large deviations.
Start with the biased coin example: The most probable

sequence of all Heads is never seen for even only moder-
ate length sequences. Why? Answering that leads to a
different notion of what are called “typical sets”—those
sets of events that are both most numerous and capture
lots of the sequence probability density.

Call refer back to the word distribution for the biased
coin as you talk through this motivation.

1. Asymptotic Equipartition

Let’s consider a sequence of random variables,
X1, X2, ... which is independent and identically dis-
tributed (i.i.d.); means that all random variables are mu-
tually independent and have the same probability distri-
bution. Asymptotic equipartition property states that
the joint probability P (X1, ..., Xn) satisfies

lim
n→∞

log2 P (X1, X2, ..., Xn)

n
= H(X) (61)

where H(X) is the entropy associated with the random
variable X. One could divide the set of all sequences
with the length n to two partitions. First typical set Anε
defined through

Anε ={(x1, x2, ..., xn) : 2−n(H(X)+ε)

≤ P (x1, x2, ..., xn) ≤ 2−n(H(X)−ε)} (62)
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The remaining is non typical set. Then for any typical
set

∀ε ≥ 0, ∃ n0 : n > n0,

Pr{| − log2 P (x1, x2, ..., xn)

n
−H(X)| ≤ ε} ≥ 1− ε.

(63)

This means that for large n, typical set is most probable,
and the probability of each sequence in the typical set,
Anε , have almost the same value 2−nH(X). It is impor-
tant to note that although the size of typical set size is
really smaller than the whole set of sequences’ size, but
it contains most of the probability.

It should be noted that, There is also another theo-
rem called Shannon-McMillan-Breiman theorem, which
states that one may release discrete-time i.i.d. condition
for AEP. It is only need to have discrete-time stationary
ergodic process.

Let’s consider biased coin process. A typical set with
length n forms of sequences containing of np, 1, and n(1−
p), 0. A sequence whose all elements are 1, is an example
of non-typical set.

2. Infinite Partition Idea

As we discussed, in a classical point of view, A∞ could
be divided to two subsets, typical and non typical set
and most of the information measures are defined on the
typical one. For example metric entropy is the exponent
of the decay for any realizations of data in typical set,
but one could ask what is the exponent of the decay for
other part of A∞ or many other questions. The prob-
lem with studding non typical set is those realizations of
data which belong to non typical set are so rare. Here
we propose a method to study the whole A∞ instead of
typical set. We divide the A∞ to infinite independent
subsets Aβ ’s and another subset called FW which has
all the forbidden words (words with zero probabilities)
in it. For a given process T we define ATβ by

ATβ := {w : w ∈ A∞, − limL→∞ Pr(w)

L
= U(β)}, (64)

We label subsets with parameter β. Typical set is one
of these subsets with β = 1. To study ATβ we do a trick.
We use a mapMβ to map our process T to a new process
Sβ which its’ typical set is equal to ATβ .

ATβ = A
Sβ
1 (65)

Now we could study typical set of Sβ which is ATβ .
Changing β we could cover all the set and study all
ATβ . Now all information measures could be parametrized
with β and we could study all parts of A∞. But how we
should partition A∞? Because ATβ is equal to typical set
of a Sβ , all it’s members should have the same proba-

AT1 = TS AT1 = TS

ATβ A
Sβ
β′

FW FW

A∞ A∞

T Sβ

Mβ

FIG. 39. Infinite partition idea

bility that means they have the same energy density, so
we also could parametrize the set with U instead of β.
The result is, we have infinite subsets which every subset
include words with the same probability and we could
label them with U .

3. Large Deviation Rate Function

One may be interested in investigating the probability
of the class of sequences with the same energy U (same
probability). Let’s define:

I(U) := lim
L→∞

[
− log2 Pr(UL)

L

]
. (66)

The probability of classes decay exponentially as a func-
tion of L and this is the reason for existence of L in the
denominator. This function is called large deviation rate
function. It is important to know that I(U(β)) measures
how fast the probability of a whole subset ALβ decays
when we increase L and not how fast the probability of
words in Aβ decays. When we increase L number of
words with the same U increase exponentially, and the
probability of every word decreases exponentially. The
probability Pr(UL) is the multiplication of the number
of sequences with the same energy U and the probability
of a sequence with the energy U :

Pr(UL) = N(UL) Pr(ULw = U) . (67)

From Eqs. (15) and (16), one obtains:

Pr(ULw = U) = exp(−LU), (68)

N(UL) = exp(LS(U)) . (69)
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Then one immediately sees that:

I(U) = U − S(U) . (70)

Thus, the large deviation rate function is closely re-
lated to the fluctuation spectrum.

Because S is a convex function of U , we have(
∂2I

∂U2

)
≥ 0 , (71)

and I would be a concave positive function of U . From eq.
21 it is easy to see that S and U are equal at β = 1, this
means I(U(1)) would be zero. That means probability of
typical set decays with exponent zero while we increase L.
As we mentioned earlier β = 1 indicate typical set and we
expect probability of typical set converges to 1, for large
L which is the exact result that I tells us. For other
values of β, we expect the probability of ALβ converges to

zero when we increase the length and I(U(β)) indicate
how fast this convergence is.

4. Examples

As an example let’s consider biased coin process.
Fig.40 shows large deviation rate function versus energy
for this process. Green line indicates β = 1 and purple
line indicate β = 0. From eq. A13 it is clear that max-
imum of S(U) happens at β = 0 which is shown with
purple line in the figure. As it is shown I is zero at β = 1
which means we do not have any exponential decay of
probability for typical set and probability of typical con-
verges to one when we increase the length of the words.
As it is clear from figure, for other subsets we have pos-
itive I(U) and that means the probabilities of subsets
decrease exponentially with the exponent I(U) when the
length of words increase. The most rare class for this
process is at Umax in the case β → −∞ with exponent
around 1.33. From concavity of I(U) it’s easy to see the
most rare class happens either when β converge to pos-
itive infinity or negative infinity. The same calculation
for Nemo process is shown in fig. 41. For this case the
most rare class happens at Umin or in the case β → +∞.

A. Typical Process

Typical processes are those process which do not have
non typical set. It means For those processes A∞ has
only two partitions, which are typical set and forbidden
words. Every words that can be generate by a given
typical process have the same probability. The partitions
for a typical process is shown in fig. 42

Lemma 11. Typical processes are uniquely determine
by their forbidden words, or, for a given set of forbidden
words there exists a unique process.
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FIG. 40.

Large deviation rate function versus energy for Biased
coin process with p = 0.4

0.60 0.65 0.70 0.75 0.80 0.85 0.90
U

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S

I

FIG. 41.

Large deviation rate function versus energy Nemo
process with p = 0.65

Proof. Having forbidden words, all the other words that
are excluded has equal probability for a chosen length and
that means we know their probability. Knowing all the
probabilities for every words in A∞ uniquely determine
the process.

Now we could label all the typical process with their
set of forbidden words. We will note a typical process
which it’s set of forbidden words is z by τz.

We could also define the set of all typical process by

f = {τz|z ⊂ A∞}. (72)

From the definition it is clear that all the typical pro-
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Typical set

A∞

Forbidden

words

FIG. 42. Partitions for typical process

A1
2 |1 1

2 |0

FIG. 43. Fair Coin Process ε-machine.

cess has one definite U , that means if we look at their
FSD, it would be nonzero only at one definite U . Be-
cause that U belongs to a typical set, means S(U) = U .
So as a result FSD graph for typical processes are just
one point with equal S(U) and U .

1. Fair Coin Process

A simplest example for typical process is fair coin pro-
cess which is defined by the machine in the fig. 43.

Lemma 12. Fair coin process is a typical process

Proof. First, There are no forbidden words for this pro-
cess and every word can generate. Probabilities of every
word with length n are the same and equal to 2−n. That
means

∀w ∈ An : 2−n(H(X)+ε) ≤ Pr(w) ≤ 2−n(H(X)−ε) (73)

and that completes the proof.
starting with the biased coin process and changing p

we could study how FSD changes. The results are shown
in fig. 44. For this process we could calculate Umax
and Umin analytically. From eq.’s 21 and 9 and knowing
S(U) at Umax and Umin for this process is zero, we could
rewrite Umax and Umin
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p=0.3

p=0.4

p=0.5

FIG. 44.

FSD for biased and fair coins

Umax = lim
β→−∞

−1

β
(log λ̂β),

Umin = lim
β→∞

−1

β
(log λ̂β). (74)

we also have

λ̂β = P β + (1− p)β , (75)

and that means

Umax = − log p,

Umin = − log(1− p). (76)

Defining ∆ := Umax−Umin, as a width for S(U), we will
have

∆ = log
1− p
p

. (77)

2. Typical Nemo Process

Another example for typical process is a special case of
Nemo process. Here we will find that process analytically.
Let’s calculate the process at arbitrary temperature.
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FIG. 45. FSD for Nemo process.

S0β :=

0 (1− pβ

λ̂β
) 0

0 0 1
1
2 0 0

 ,

S1β :=

 pβ

λ̂β
0 0

0 0 0
1
2 0 0

 . (78)

which λ̂β satisfies this equation

(
λ̂β
pβ

)3 − (
λ̂β
pβ

)2 − 2(
1
2 (1− p)
p3

)β = 0. (79)

For p = p0 ≈ 0.5898 which p0 satisfies

2p3
0 + p0 − 1 = 0, (80)

equation 79 turns to

(
λ̂β
pβ

)3 − (
λ̂β
pβ

)2 − 2 = 0. (81)

This means
λ̂β
pβ

is independent from β and that leads to

independence of S0β and S1β from temperature. We will
prove in the next section that independence of a process
from temperature are equivalent to be a typical process.
So Nemo process with p0 is a typical process. FSD for
Nemo process for different p is shown in fig.45.

3. Maximum Entropy versus Typical Process

Lemma 13. Maximum of S(U) for a given ε-machine
only depends on the topology of the machine (in other
words the connectivity matrix, T0) and it is independent

of the distribution over the edges.

Proof. From eq. A13 the maximum of S(U) happens at
β = 0. Using lemma. 1 and eq. 9, we have

S(U(β = 0)) = h(β = 0) = log2 λmax. (82)

which log2 λmax is independent of distribution over the
edges and only depends on topology of the ε-machine
(connectivity matrix T0) and this completes the proof.

Theorem 4. For a given topology (connectivity matrix
T0) there exist a unique distribution over the edges that
maximize metric entropy hµ of ε-machines with the same
topology.

Proof. Assuming an n states machine, for arbitrary
state i there is two possibilities which is shown in fig.
46, either there are two exiting edges or one. For the
first case in the ith row of the transfer matrix we only
have two non zero elements we label the first column f(i)
and the second one g(i). In the second case we only have
one non zero element in ith row and we label that column
k(i).

Our goal is to for a given topology find Tif(i)s in a way
that maximize the metric entropy. We will use Lagrange
multipliers method to do this. The constraints on maxi-
mization are { ∑n

i=1 πi = 1

∀i : πi =
∑n
i=1 πjTji.

(83)

Hence we maximize

ψ = −
n∑
i=1

πi(Tif(i) log2 Tif(i) + (1− Tif(i)) log2(1− Tif(i)))

− a
n∑
i=1

πi −
n∑
i=1

µi(πi −
n∑
j=1

πjTji). (84)

For the states that we have two exiting edges we have
∂Tif(i)ψ = πi{log2 Tif(i) − log2(1− Tif(i))

−µf(i) + µg(i)} = 0,

∂πiψ = {Tif(i) log2 Tif(i) + (1− Tif(i)) log2(1− Tif(i))}
+a+ µi − µf(i)Tif(i) − µg(i)(1− Tif(i)) = 0,

(85)

and for the states with one exiting edge we have

∂πiψ = a+ µi − µk(i) = 0. (86)

Solving the first set of equation leads to{
Tif(i) = exp(−a+ µf(i) − µ(i)),

Tig(i) = exp(−a+ µg(i) − µ(i)).
(87)

If we call the set of states with two exiting edges d and
the states with one exiting edge f then we end up with this
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FIG. 46. for arbitrary state i there is two possibilities, either
there are two exiting edges or one.

set of equations
∀i ∈ d

exp(−a+ µf(i) − µ(i)) + exp(−a+ µg(i) − µ(i)) = 1,

∀i ∈ f

a+ µi − µk(i) = 0.

(88)

Now we have n equations and n+ 1 unknown parameters
(µisanda) but because in all equations difference of the
µis are appeared we could always set one of them and we
end up with n unknown parameters. Solving these equa-
tions gives us the Tif(i) that maximize metric entropy.

4. Examples

For the first example, we calculate the distribution over
the edges for the topology which is shown in fig.10 that
maximize metric entropy. Using theorem 4 we could
rewrite the transfer matrix as

T =

(
exp(−a) exp(−a+ µ2 − µ1)

1 0

)
, (89)

and we have{
exp(−a) + exp(−a+ µ2 − µ1),

a+ µ2 − µ1 = 0.
(90)

Solving these equations the answer would be

T =

(√
5−1
2

3−
√

5
2

1 0

)
, (91)

which is the same answer that we calculated before.
For the next example consider the topology which is

shown in fig. 47. Using theorem 4 the transfer matrix
will be

T =

0 e−a+µ2−µ1 e−a+µ3−µ1 0
0 e−a 0 e−a+µ4−µ2

0 0 e−a e−a+µ4−µ3

1 0 0 0

 . (92)

12 3

4

FIG. 47. Given topology.

and we have
exp(−a+ µ2 − µ1) + exp(−a+ µ3 − µ1) = 1,

exp(−a) + exp(−a+ µ4 − µ2) = 1,

exp(−a) + exp(−a+ µ4 − µ3) = 1,

a+ µ4 − µ1 = 0.

(93)

Solving these equations the answer would be

T =

0 1
2

1
2

0
0 p0 0 1− p0
0 0 p0 1− p0
1 0 0 0

 . (94)

which p0 satisfies

2p3
0 + p0 − 1 = 0, (95)

the same equations that we derived for typical Nemo pro-
cess and because of the symmetry in the answer the num-
ber of states reduce to three and the ε-machine looks like
fig. 22.

Lemma 14. The distribution that maximize the metric
entropy for any n states topology which every state has
two exiting edges is half and half over any pair of exiting
edges.

Proof. It is easy to see that he answer for set of equa-
tions 88 in theorem 4 for this case is{

∀1 ≤ i ≤ n : µi = c

exp(−a) = 1
2

(96)

and that means

∀1 ≤ i ≤ n : Tif(i) = Tif(i) =
1

2
. (97)

For n > 1 this answer is not minimal, the minimal ver-
sion of this answer is a fair coin process. This means for
any n states topology which every state has two exiting
edges the answer for the process with maximum entropy
with the same topology is somehow trivial and it is a fair
coin process.
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B. Thermodynamic Classes in Process Space

Lemma 15. For a mapping defined by Eq. (31) we have:

Mβ1
Mβ2

=Mβ1β2
. (98)

Proof. Using Lemma 4 the proof is direct.

Lemma 16. Duality: Looking at the process T at β = β0

is equivalent to look at the process Sβ′ at β = β0β
′−1.

Proof. Using Lemma 15:

Mβ0β′−1Sβ′ =Mβ0β′−1Mβ′T =Mβ0T . (99)

Lemma 17. Any process belonging to f is invariant un-
der temperature changes.

Proof. For any process belonging to f all the probabil-
ities for words with same length are equal. When we
change the temperature after the twist using Lemma 4
the probabilities are still equal and that means the proba-
bilities are invariant under temperature changes and that
complete the proof.

For a given process T we define a set by:

DT = {MβT |β ∈ R} \ f . (100)

This set includes all processes that can be generated from
process T by changing the temperature, excluding any typ-
ical process from it.

Lemma 18. Any two processes from DT convert to each
other via temperature change.

Proof. From the definition of DT we could write two
process as:

A =Mβ1T

B =Mβ2T . (101)

Using Lemma 15:

B =Mβ2
Mβ−1

1
T =Mβ2β

−1
1
T , (102)

and this completes the proof.
Lemmas 18 and 17 say that for any arbitrary process

either it is typical or belongs to a partition with infinite
members that convert into each other via a temperature
change. Thus, as Fig. 48 illustrates, the mapping parti-
tions process space to infinite classes, some of which with
only one member and others infinite members. Within
each all members convert into each other by changing
temperature.

Lemma 19. For a given process T , FSD function for
Sβ =MβT is related to FSD function of T via:

SSβ (U) = ST

(
U

β
+

(β − 1)h(β)

β

)
. (103)

FIG. 48.

Thermodynamic classes in process space.

Proof. Consider two different energy densities U1 and
U2, they map to new ones U ′1 and U ′2 when we map T to
Sβ. Using Thm. 4 we have:

U ′2 − U ′1 = β(U2 − U1) , (104)

This means we could write the mapping between any U ′

and U as:

U ′ = βU + C(β) .

Now, we should find C(β).
We also know that U = U(β) would map to U ′ =

S(U(β)), because for our new process Sβ, SSβ (U) should
be equal to U at new β = 1, that gives us:

C(β) = S(U(β))− βU(β) .

Using Lemma 2 we have:

C(β) = −(β − 1)h(β) ,

and the mapping between U ′ and U would be:

U ′ = βU − (β − 1)h(β) .

We also have:

SSβ (U ′) = ST (U) ,

completing the proof.
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VII. BEYOND THE LIMITS

Until now we have had several limitation. First have
been working on processes with finite number of states
and second all of the process were ergodic ones. Here we
will go beyond these limitation.

A. Infinite-State Processes

In this section we will look at the processes with infi-
nite number of states. The problem with these processes
is that calculating eigenvalues and eigenstates either ana-
lytically or computationally is hard for Hilbert space and
there are limited number of processes that we could ex-
actly calculate these quantities for them.

We will not do any calculation for any specific process
but we will prove a very powerful theorem that gives us
an intuition about the difference between processes with
finite and infinite number of states.

Consider a sequence of ε-machines Σ = {Mn} which is
a list of ε-machines M1,M2, ...,Mn−1 and Mn such that
each Mi has these conditions:
1. It has i number of states
2. State i has a self loop with probability c−i which c < 1
that generate symbol s
3. That self loop has the minimum probability between
probabilities over all the edges.
4. There are no close path from any of states (except
state i) to that state itself that only generate symbol s.

We define a process MΣ by

MΣ = lim
n→∞

Mn (105)

Theorem 5. FSD S(U) for the process Mσ has a vertical
asymptote when U converges to infinity (fig. 49).

Proof. Consider Mn and let us look at the word w =
ss...s which has 2n zeros. Because the condition 4, for
the probability of generating this word by Mn we will have

Pr(w) > Pr(σi)(c
−n)n, (106)

and the energy density for this word would be

Uw = − log2 Pr(w)

n
> n(− log2(c)). (107)

When we increase the n, this energy increases linearly
with n and we also know

Umax ≥ Uw, (108)

that means

lim
n→∞

Umax →∞. (109)

Now using theorem 3 and the result that we just derived

U

S
(U

)

FIG. 49.

S versus U for Mσ

S(U) should has a vertical asymptote when U converges
to infinity.

Let us look at an example for a sequence Σ. The nth
member of Σ is shown in fig. 50. This ε-machine satisfies
all four conditions and that means FSD S(U) for the
process Mσ has a horizontal asymptote when U converges
to infinity.

B. Nonergodic Processes

In this section we will look at the non ergodic processes.
For these process having one realization of data with in-
finite length is not enough to determine the process. An
example for these processes is shown in fig. 52. If we
start at state A and look at the realization only for once
we definitely miss one of the branches.

Consider a non ergodic process like the processes in fig.
51 which each of M1,M2, ...,Mn−1 are ε-machine’s and
i is a starting state. At start we are in state i then the
finite size word wk would generate with probability pi and
we will end up at one of the states of Mk. That means
at first we have a stochastic transient behavior and then
one of the machines will be chosen.

Theorem 6. For a process which is shown in fig. 51,
FSD would be

∀U > 0 : S(U) = sup{Sj(U) : 1 ≤ j ≤ n}, (110)

which Sj(U) is FSD for Mj.

Proof. In the limit of L→∞ using eq. 16 and having

N(UL) =

n∑
j=1

Nj(U
L), (111)
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FIG. 50. Mn.

which in Nj(U
L), index j refer to Mj, we will have

N(UL) =

n∑
j=1

exp(Sj(U)L). (112)

That means we have

S(U) = lim
L→∞

1

L
log2

n∑
j=1

exp(Sj(U)L)

= sup{Sj(U) : 1 ≤ j ≤ n}. (113)

As an example for theorem 6 let us look at the process
which is shown in fig. 52. Using the theorem FSD for
this process would be the graph in fig. 53.

M1

M2

..
.

i

Mn−1

Mn

p1|w1

p2|w2

pn−1|wn−1

pn|wn

FIG. 51. An example for non ergodic process.

A
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D

1
2 |1 1

2 |0

0.1|1

0.9|0 1|1

0.45|00.55|1

FIG. 52. An example for n = 2 for the process which is
shown in fig. 51.

Appendix A: Proofs

1. Theorem 1 and a Lemma

Theorem 1 A process’ Shannon entropy rate can be
directly calculated from its ε-machine using:

hµ = −
N∑
i=1

Pr(σi)
∑
x∈A

Pr(x|σi) log2 Pr(x|σi) .

Proof. First, we introduce state-symbol ordered pairs
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FIG. 53.

FSD versus energy for the process which is shown in fig.
52

yi = (σi, xi) and note that:

Pr(y0:`) = Pr(y0)
∏̀
i=1

Pr(yi|yi−1) .

Defining:

Λ(y0:) = − lim
`→∞

1

`

∑
{y0:`}

Pr(y0:`) log2 Pr(y0:`) ,

we have:

Λ(y0:) := lim
`→∞

1

`

(
−
∑
{y0:`}

Pr(y0)

`−1∏
i=1

Pr(yi|yi−1) log2 Pr(y1)

−
∑̀
j=1

∑
y′s

Pr(y1)
∏̀
i=1

Pr(yi|yi−1) log2 Pr(yj |yj−1)
)
.

To calculate the first term in the righthand side, first sum
over yn, then yn−1, and so on. After summing over y1

we have:

∑
{y0:`}

Pr(y0)

`−1∏
i=1

Pr(yi|yi−1) log2 Pr(y0)

=
∑
y0

Pr(y0) log2 Pr(y0) .

Now, let’s calculate the following summation for arbitrary
j:

∑
{y0:`}

Pr(y0)

`−1∏
i=1

Pr(yi|yi−1) log2 Pr(yj |yj−1) .

Summing over yn, yn−1, and so on to yj+1 and then y1,

y2, and so on till yj−2 leads to:

∑
{y0:`}

Pr(y1)

n∏
i=2

Pr(yi|yi−1) log2 Pr(yj |yj−1)

=
∑

yj−1,yj

Pr(yj) Pr(yj |yj−1) log2 Pr(yj |yj−1)

=
∑
y1,y2

Pr(y1) Pr(y2|y1) log2 Pr(y2|y1) .

Now, the entropy rate may be written as:

Λ(y0:) = − lim
`→∞

1

`

(∑
y1

Pr(y1) log2 Pr(y1)+

(`− 1)
∑
y1,y2

Pr(y1) Pr(y2|y1) log2 Pr(y2|y1)
)

= −
∑
y1,y2

Pr(y1) Pr(y2|y1) log2 Pr(y2|y1)

= −
∑

σ1,x1,σ2,x2

Pr(σ1, x1) Pr(σ2, x2|σ1, x1)

log2 Pr(σ2, x2|σ1, x1) .

Using:

Pr(σ2, x2|σ1, x1) = Pr(σ2|σ1, x1) Pr(x2|σ2, σ1, x1)

= Pr(σ2|σ1, x1) Pr(x2|σ2) ,

we have:

Λ(y0:`) =−
∑

σ1,x1,σ2,x2

Pr(σ1, x1) Pr(σ2|σ1, x1) Pr(x2|σ2)(
log2 Pr(σ2|σ1, x1) + log2 Pr(x2|σ2)

)
.

Pr(σ2|σ1, x1) takes only two values (0 or 1) and so:

Pr(σ2|σ1, x1) log2 Pr(σ2|σ1, x1) = 0 ,

which leads to:

Λ(y0:`) =

−
∑

σ1,x1,σ2,x2

Pr(σ1, x1) Pr(σ2|σ1, x1) Pr(x2|σ2) log2 Pr(x2|σ2)) .

Finally, summing over σ1 and x1 one arrives at:

Λ(y0:`) = −
∑
σ2,x2

Pr(σ2) Pr(x2|σ2) log2 Pr(x2|σ2) .

Lemma 20. lim`→∞ Λ(y0:`) = hµ.

Proof. From the definition of an ε-machine:

Λ(y0:`) =
1

`
H((σ, x)0:`)

=
1

`
H(σ1, x0:`) ,
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that means:

Λ(y0:`)−
1

`
H(x0:`) =

1

`
H(σ1, x0:`)−

1

`
H(x0:`)

=
1

`
H(σ1|x0:`) ≤

1

`
H(σ1) ,

where in the infinite limit of `:

lim
`→∞

|Λ(y0:`)− hµ| ≤ 0 .

And, this complete the proof.

2. Lemma 1

Lemma 1 The topological and Shannon entropy rates
are special cases of the Renyi entropy rate:

h = h(β = 0)

and

hµ = h(β → 1) ,

respectively.

Proof. From Eq. (20) we have:

h(β = 0) := lim
`→∞

1

`
log2

∑
{w∈A`,Pr(w)>0}

1 .

Recalling that:

N(`) =
∑

{w∈AL,Pr(w)>0}

1 ,

completes the proof’s first part. For the next, we have:

h(β → 1) = lim
β→1

lim
`→∞

1

`(1− β)
log2

∑
{w∈A`}

(Pr(w))β ,

and using L’Hôpital’s rule gives:

h(β → 1) = − lim
β→1

lim
`→∞

1

`

∑
{w∈A`}

(Pr(w))β log2 Pr(w)

∑
{w∈A`}

(Pr(w))β

= − lim
`→∞

1

`

∑
{w∈A`}

Pr(w) log2 Pr(w)

= hµ .

3. Lemma 2

Lemma 2 The Renyi entropy rate h(β) and thermo-
dynamic entropy density S(U) are related by:

S(U(β)) = βU(β)− (β − 1)h(β) , (A1)

where:

U(β) = argmax
u∈U∞

(S(u)− βu) . (A2)

Proof. We can translate the word probabilities in Eq.
(18) to energies via:

Pr(w) = exp(−u`) .

Then, recalling that eS(u)` is the size of the class of words
with a given probability leads to:

(1− β)h(β) = lim
`→∞

1

`
log
∑
u

exp((S(u)− βu)`) .

At fixed β there exists a unique u that maximizes (S(u)−
βu). So, we define a function U(β) that assigns a unique
u to each β:

U(β) = argmax
u∈U∞

(S(u)− βu) . (A3)

We call U(β) energy density. Then, we have:

(1− β)h(β) = lim
`→∞

1

`
log
{

exp((S(U(β))− βU(β))`)(1 +
∑

u 6=U(β)

exp(((S(U(β))− βU(β))− (S(u)− βu))`))
}

= S(U(β))− βU(β)) + lim
`→∞

1

`
log
{

1 +
∑

u6=U(β)

exp(((S(U(β))− βU(β))− (S(u)− βu))`)
}
.

The exponent in the second term in the sum is always
negative and so the second term vanishes, completing the
proof.

4. Lemma 3

Lemma 3 The energy density and Renyi entropy are
related by:

U(β) =
∂

∂β
((β − 1)h(β)) . (A4)
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Proof. Using Eq. (20), we have:

∂

∂β
(β − 1)h(β)

= − lim
`→∞

1

`

∑
{w∈A`}

(Pr(w))β log(Pr(w))

Z(β)
(A5)

= − lim
`→∞

1

L

∑
u

exp((S(u)− βu)L)(−uL)∑
u

exp((S(u)− βu)L)
,

where we changed from words to their probability classes.
Using the energy density of Eq. (A3) and saving the dom-
inant terms in the summation, similar to previous proof,
we have:

∂

∂β
(β − 1)h(β)

= − lim
`→∞

1

`

exp((S(U(β))− βU(β)`)(−U(β)`)

exp((S(U(β))− βU(β)`)

= U(β) ,

and this complete the proof.

5. Theorem 3

Theorem 3 S(U) is a convex function of U , where the
former is given by Eq. (??), the latter by Eq. (??).

Proof.

dλ̂β
dβ

=
∑
i,j

(̂lβ)j
d(Tβ)ij

dβ
(r̂β)j

=
1

β

∑
i,j

(̂lβ)j(Tβ)ij(r̂β)j log(Tβ)ij . (A6)

From Eqs. (31) and (33) one sees that:

(̂lβ)j(Tβ)ij(r̂β)j = λ̂β(Pβ)i(Sβ)ij . (A7)

Using this in Eq. (A6) gives:

1

λ̂β

dλ̂β
dβ

=
1

β

∑
i,j

(Pβ)i(Sβ)ij log(Tβ)ij

=
1

β

∑
i,j

(Pβ)i(Sβ)ij

[
log(Sβ)ij + log λ̂β

+ log(r̂β)i − (r̂β)j ]

= −S(U(β))

β
+

log λ̂β
β

+
1

β

∑
i,j

(Pβ)i(Sβ)ij [log(r̂β)i − (r̂β)j ] . (A8)

To obtain the first term above, the definition of entropy
is used and for the second term one makes use of:∑

i,j

(Pβ)i(Sβ)ij =
∑
j

(Pβ)j

=
∑
j

(r̂β)j (̂lβ)j

= lβ · rβ
= 1 . (A9)

Now, using:∑
i

(Pβ)i(Sβ)ij = (Pβ)j = (r̂β)j (̂lβ)j , (A10)

the third and the fourth terms in Eq. (A8) simply cancel,
and one arrives at:

d

dβ
(log λ̂β) = −U(β) . (A11)

Then one may take S(·) as a function of β. Multiplying
both sides of Eq. (??) by β and differentiating both sides
with respect to β, one obtains:

U + β
dU

dβ
=

dS

dβ
− d

dβ
(log λ̂β), (A12)

Using Eq. (A11), one finds:

β =
dS/dβ

dU/dβ

=
dS

dU
. (A13)

Thus, β indeed plays the same role here as the inverse
temperature in statistical physics.

Now, let’s consider the convexity of entropy with re-
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spect to U . Since:

d2S

dU2
=

dβ

dU

= −
(

d2

dβ2
log λ̂β

)−1

, (A14)

the thermodynamic entropy will be convex with respect to

U , as long as log λ̂β is convex with respect to U . For
any two constant matrices A and B [50] and any integer
number N :

BTN
β A = Cλ̂Nβ + · · · , (A15)

where for large N , the dominant term is Cλ̂Nβ . In any

case, BTN
β A contains summation of multiplication of

functions of the type Pr(x|σi)β or:∑
exp

{
β
∑

Pr(x|σi)
}
. (A16)

Then, differentiating log(BTN
β A) twice with respect to β

results in a positive quantity. However, for large N , this

is proportional to two times differentiation of log λ̂β with
respect to β. This completes the proof.
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